
70 INSIGHTS • SUMMER 2016	 www.willamette.com

The Valuation of Computer Software in the
Health Care Industry
John E. Elmore, JD, CPA

Intangible Asset Valuation Insights

Taxpayers are often unaware of the fact that in many tax jurisdictions a portion, if not all,
of the software incorporated in medical equipment and health-care-related information

technology (IT) systems may be exempt from ad valorem property taxation. Under those
circumstances, the property tax assessment should reflect a deduction for the value of the
nontaxable software. This discussion presents generally accepted methods that valuation

analysts may use to value health care industry computer software for property tax purposes.

Introduction
In many jurisdictions, the property tax is an “ad
valorem” tax. That means that the taxpayer prop-
erty is taxed according to the value of the property.
Valuation analysts often assist in the taxation pro-
cess by valuing the personal property subject to the
tax. The taxation of computer software as personal
property is a phenomenon of the modern era that
may not fit easily within the traditional definitions
of tangible personal property and intangible per-
sonal property.

Attempts by state tax authorities to address this
issue has resulted in an incongruous collection of
state-specific rules and methods by which valuation
analysts and tax advisers contend for guidance in
determining what portion of a taxpayer’s computer
software assets is taxable and what portion is tax-
exempt. This discussion presents an overview of the
valuation of computer software for property tax pur-
poses, with an emphasis on the health care industry.

Computer Software in the
Health Care Industry

Computer software is revolutionizing health care.
Advances in the delivery and efficacy of health care
are driven mostly by advances in technology—tech-
nology that depends largely on software. Computer
software is used in virtually all fields of medicine
and throughout the health care industry.

Examples of the use of software in health care
include the following:

1.	 Medical devices, including devices for diag-
nostics and monitoring

2.	 Surgical robots

3.	 Medical imaging systems

4.	 Telemedicine

5.	 Electronic medical records processing and
storage

6.	 Medical diagnosis and expert systems

7.	 Nuclear medicine equipment

8.	 Radiation oncology and linear accelerator
equipment

9.	 Pharmaceutical and biotechnology research,
including drug discovery

10.	 Genetic testing and personalized medicine

11.	 Health care management information and
billing systems

12.	 Health care analytics for epidemiology and
population health management

In many cases, software operates on conven-
tional computer servers and laptops. Many of the
categories include specialized hardware devices,
such as surgical robots and diagnostic machines.
These devices tend to be more specialized than
general-purpose computers and operate “embed-
ded” software.

Best Practices

www.willamette.com	 INSIGHTS • SUMMER 2016 71

Embedded software is similar in most respects
to other software, though traditionally embedded
software was designed to operate under memory
size and computer power constraints, often using
specialized computer processors.

For example, in California, the Orange County
Assessor’s Office levied significant personal prop-
erty taxes on Cardinal Health 301, Inc. (Cardinal),
a manufacturer and lessor of medical equipment for
automatically dispensing and tracking medicine—a
kind of computerized “medicine storage cabinet.”1

The Assessment Appeals Board noted that 90
percent of the assessed value of each unit leased
was attributed to proprietary embedded software.
Cardinal challenged the property tax assessment in
court and won on the position that the embedded
software did not constitute a taxable asset under
California property tax law.

Taxpayers are often unaware of the fact that in
many tax jurisdictions a portion, if not all, of the soft-
ware incorporated in medical equipment and health-
care-related information technology (IT) systems
is exempt from property tax. Under those circum-
stances, the property tax assessment should reflect
a deduction for the value of the nontaxable software.

Identification of the Computer
Software Subject to Taxation

A few states assess property taxes on intangible
personal property, including computer software.
Virginia, for example, specifically defines “computer
application software” as taxable intangible personal
property.2

As a general rule, however, most state tax juris-
dictions do not tax intangible personal property.
Therefore, taxpayers have sought to avoid taxation
of computer software by claiming that the programs
and services of which it is composed constitute
intangible property.

Three general lines of reasoning have been
devised by state courts to determine whether com-
puter software is tangible or intangible:

1.	 Whether one is purchasing a tangible stor-
age medium versus the intangible knowl-
edge contained therein

2.	 Whether software is an operational program
or an application

3.	 Whether software is “custom” or “canned”

The first line of reasoning, which we may call the
“container test,” focuses on a substance-over-form
inquiry involving two components:

1.	 A physical storage medium (e.g., a magnetic
tape, compact disc, or digital versatile disc)

2.	 The knowledge/information contained on
the medium

Intangible knowledge in this context refers to the
abstract representation of human knowledge in the
form of computer code, which instructs a micropro-
cessor to perform computational tasks to manipu-
late and communicate this intangible knowledge.

Starting in the early years of computing, tax
authorities sought to characterize software by the
tangible form in which it was stored and distributed.
The container test examines whether the intangible
knowledge (that is, the computer code) contained
within a tangible medium is a significant factor for
tax purposes and whether the tangible medium may
be considered merely incidental to the purchase of
that intangible knowledge.

The container test appears increasingly outdated
in today’s computing environment, as the use of
tangible storage mediums for software distribution
has waned and software is routinely downloaded
to computers directly or accessed on demand from
servers in a cloud network.

For example, in 1996, the Texas Court of Appeals
ruled that software was intangible property and,
therefore, not subject to ad valorem taxation.3

The court said that the software was intangible
because the “essence of the transaction” was not
the tangible medium that was used to transport the
software to the consumer (for example a disk or
CD-ROM) but rather the software it contained.

“Computer application software,” the court rea-
soned, is intangible personal property consisting of
imperceivable binary pulses, programs, routines,
and symbolic mathematical code that controls
functioning of computer hardware and directs hard-
ware operations; therefore, it was not subject to ad
valorem taxation as tangible personal property.

A number of states have emphasized a second
line of reasoning that focuses on how separable the
software is from the computer hardware on which it
operates. Some states insist that software is essen-
tially inseparable from the tangible hardware on
which it operates.

The Ohio Supreme Court, for example, upheld
the Ohio Department of Taxation position that all
software was taxable under the reasoning that the
encoded instructions are always stored in some
form of physical memory—a tangible medium—
when operating in a computer.4

Therefore, in Ohio, the entire computer and all
of the software operating thereon is taxable.

72 INSIGHTS • SUMMER 2016	 www.willamette.com

In other states, the issue of separability usually
takes the form of classifying software either as:

1.	 operational software or

2.	 application software.

Operational software is generally required in
order for the computer to function. Sometimes
operational software is described as “embedded”
software (or “firmware”). This is based on the fact
that the software is encoded into memory chips
attached directly to the circuit board of a comput-
ing device. Embedded software is often ascribed to
specialized computing devices that lack many of the
features and attachments associated with a general-
purpose computer.

But even a general-purpose computer, like a
laptop computer, contains embedded software in
the form of a basic input output system (BIOS).
BIOS is permanently stored in a memory chip on a
computer motherboard (the primary circuit board).
It is always and automatically executed when the
computer is turned on.

It serves as the fundamental, real-time operating
system (OS) for managing the microprocessor(s) on
the motherboard and the peripheral devices that
attach to the motherboard. For a laptop computer,
these attached devices include a hard drive, a video
graphics card, a network adapter, a keyboard, and a
touchpad.

Depending on the tax jurisdiction, however,
operational software may have a more expansive
definition and include a general-purpose OS that
works in conjunction with the BIOS.

The general-purpose OS is software typically
stored on a larger memory medium, such as a disk
drive, that is loaded and executed by the BIOS to
provide a more sophisticated operating environ-
ment (e.g., graphical user interface, multitasking
features). Two examples are:

1.	 the Linux operating system and

2.	 the Microsoft Windows operating system.

It is upon the foundation of the BIOS and the
general-purpose OS that application software oper-
ates.

The Kansas Department of Revenue describes
the distinction between operational software and
application software as follows:

The Kansas Supreme Court has held that
software programs are taxable if they are
operational programs; programs the com-
puter cannot operate without. These pro-
grams are considered an essential portion

of the computer hardware and are taxable
as tangible personal property in conjunc-
tion with the hardware. On the other hand,
application programs, which are particular-
ized instructions, are intangible property,
which is not subject to taxation in Kansas.

As a simple illustration, a laptop computer first
executes a BIOS when it is turned on. This BIOS
typically would be considered a tangible asset that
is taxable. Once the laptop computer has booted up,
a user may choose to execute an application such as
Microsoft Office.

Office would qualify as tax-exempt application
software because it executes “on top” of the BIOS
and is not required for the computer to function
(the laptop will operate normally regardless of
whether Office is installed). The classification of
the Windows OS, which also executes on top of the
BIOS, as taxable operational software or tax-exempt
application software can vary by tax jurisdiction.

This interplay of embedded operational software
and general-purpose OSs can lead to complicated
tax rules. Wisconsin statutory law exempts from
property tax “mainframe computers, minicomput-
ers, personal computers, networked personal com-
puters, . . . electronic peripheral equipment, tape
drives, [and] printers.”6

The exemption does not apply to “equipment
with embedded computerized components.” In 2012,
the Wisconsin Tax Appeals Commission rejected the
property tax assessment of the City of La Crosse,
Wisconsin, against a medical clinic on the grounds
that the state’s property tax law exempted medical
equipment that connected to, and was controlled by,
an external general-purpose computer.7

In that case, the taxpayer had reported its medi-
cal equipment as exempt in its personal property
statements for the years at issue. The city tax asses-
sor reclassified as taxable all the medical equipment
except ultrasound and MRI equipment.

The Commission viewed the issue of taxability as
whether the function of a medical device depended
solely on an embedded OS, as opposed to being sub-
ject to control from a general-purpose OS executing
on an externally attached computer.

The operational software/application software
dichotomy offers a helpful guideline. But it is only
a general guideline. Not all operational software is
subject to property tax and not all application soft-
ware is tax-exempt.

For example, California state law provides that
the operational software must be preinstalled, or
“bundled,” on the computer equipment purchased
or leased.8

www.willamette.com	 INSIGHTS • SUMMER 2016 73

Operational software that is not bundled gener-
ally is not subject to the property tax. Applications
that are bundled with computer equipment are pre-
sumed by the California tax authorities to be subject
to the property tax—a presumption that may be
rebutted by a taxpayer with a sufficient evidentiary
showing.

The third line of reasoning classifies computer
software as either (1) software developed for inter-
nal use—“custom” software—or (2) software that
is developed for commercialization (that is, for
resale)—“canned” software.

Canned software typically includes software
that is licensed to others and may be held by the
developer as inventory. Under many state property
tax statutes, custom software is taxed, while canned
software is not.

An example of canned software is the Microsoft
Office software suite. If company ABC purchases
Microsoft Office along with a new laptop computer,
the value of Microsoft Office ordinarily would not be
included in the tax base (we are assuming the tax
jurisdiction exempts “canned” software), while the
value of the laptop computer would be included as
a tangible asset.

This concept is fairly consistent with the opera-
tional software/application software dichotomy. The
distinction in this line of reasoning becomes more
evident if one considers that company ABC may
be taxed on its laptop software if it instead builds a
custom application with word-processing and other
office-productivity features.

Taxability, under the third line of reasoning,
hinges on the issue of customization, not on wheth-
er the software is application software.

In practice, the distinction between custom
software and canned software sometimes can be
difficult to discern. Classification problems arise
when one considers the many ways in which soft-
ware can be created, modified, and distributed. If a
software developer is engaged to create software for
a particular customer’s specifications that will not
be resold to others, it may be considered custom
software.

But if the developer creates the software for a
franchise chain and then licenses the software indi-
vidually to 100 franchisees, some tax jurisdictions
may classify the software as having been developed
for commercialization even though the customers
belong to the same franchise chain.

Another problem is reclassifying canned soft-
ware as customized software. Canned software can
be modified and/or incorporated into custom soft-
ware, thereby changing its nature in the process. To
what extent does modifying or incorporating canned

software transform it into custom software for tax
purposes?

There are no clear rules defining what consti-
tutes customization. The Kentucky Department of
Revenue recognized this problem, stating: “At pres-
ent, there are no solutions to the problem of clas-
sifying software. Until such determination changes
the classification of software, the Department clas-
sifies all software as tangible personal property.”9

Computer Software Valuation
Approaches and Methods

There are several generally accepted methods used
in the valuation of computer software. These meth-
ods can be categorized into the three generally
accepted intangible asset valuation approaches:

1.	 The cost approach

2.	 The income approach

3.	 The market approach

The following discussion of these approaches
summarizes the common methods employed by
valuation analysts in valuing computer software for
property tax purposes.

Cost Approach
The cost approach is premised on valuing computer
software based on some measure of cost. Two gen-
eral types of cost may be estimated:

1.	 The reproduction cost new

2.	 The replacement cost new

The reproduction cost new reflects the cost to
recreate the functionality of the subject computer
software but in a form or appearance that may differ

74 INSIGHTS • SUMMER 2016	 www.willamette.com

from the subject computer software. The replace-
ment cost new typically establishes a maximum
amount that an owner would pay for a fungible
intangible asset.

However, specially developed computer software
is often unique and may not qualify as a fungible
intangible asset. In many cases, an intangible asset
is less useful than its ideal replacement. The cost of
the subject intangible asset should then be adjusted
to reflect the loss in economic value due to func-
tional, technological, and economic obsolescence.

Under the cost approach, three methods that
may be used to provide a cost indicator for com-
puter software are as follows:

1.	 The trended historical cost method

2.	 The estimated historical cost method

3.	 The software engineering cost estimation
model method

The Trended Historical Cost Method
In this method, actual historical computer software
development costs are identified and quantified
and then “trended” through the valuation date by
an appropriate inflation-based index factor. The
valuation analyst ordinarily should include all costs
associated with the development of the subject
computer software. An allocation of taxpayer com-
pany overhead costs and the cost of employee fringe
benefits ordinarily should be included in addition to
employee payroll costs if the taxpayer company per-
sonnel are employed in tasks related to the software
development.

Historical costs ordinarily should include an
allowance for the software developer’s profit on
the software development project, an allowance for
entrepreneurial incentive to motivate the software
development project, all direct development costs
such as salaries and wages, and all indirect develop-
ment costs, such as taxpayer company overhead
and employment taxes/employee benefits.

The application of the trended historical cost
method typically estimates the reproduction cost
new of the subject computer software. In many
cases, due to technological advances in program-
ming languages or programming tools, for example,
the replacement cost new for software may be lower
than the reproduction cost new for the subject tax-
payer software.

The Estimated Historical Cost Method
Sometimes historical development costs are not
readily available. In this case, software development
costs can be estimated using actual or estimated
software development time (person hours, person

months, and so on). The development cost estimate
is computed by multiplying the development time
by an associated cost metric using specific costs per
software development person or a weighted average
cost for the software development team. This cost is
typically a full absorption cost.

As with the trended historical cost method, the
valuation analyst should consider all relevant costs
related to the software development as well as allow-
ances for the software developer’s profit and for
entrepreneurial incentive.

The Software Engineering Cost Estimation
Model Method

The valuation analyst may employ software engi-
neering models in order to estimate either the
reproduction cost new or the replacement cost
new of the taxpayer company’s computer software.
Generally, the software engineering models were
originally developed to assist software developers
in estimating the effort time and human resources
needed to complete a software project. These mod-
els have been adapted by valuation analysts for
computer software valuation purposes.

The primary input to the software engineering
models is a size-related metric. Capers Jones, a
pioneering authority in the field of software cost
estimation, observed: “Every form of estimation
and every commercial software cost-estimating tool
needs the sizes of key deliverables in order to com-
plete an estimate.”10

Jones lists six types of sizing:

1.	 Sizing based on lines of code

2.	 Sizing by extrapolation from function point
analysis

3.	 Sizing by analogy with similar products of
known size

4.	 Guessing at the size using “project man-
ager’s intuition”

5.	 Guessing at the size using “programmer’s
intuition”

6.	 Sizing using statistical methods or Monte
Carlo simulation11

Historically, the most common sizing metric has
been the number of lines of code. The definition of
a line of code and the associated line of code count-
ing conventions vary among the common software
engineering models. A line of code can be defined as
source code instructions (i.e., instructions as written
by human programmers) or object code instructions
(what the computer produces after it has compiled,
or translated, the source code into instructions the
computer can more directly process).

www.willamette.com	 INSIGHTS • SUMMER 2016 75

Lines of code have meaning only within the
context of the computer language being employed.
Languages have evolved over time and can be
classified into generations. As a general observation,
higher-generation languages require less source code
to perform the same tasks than lower-generation
languages.

Source code written in assembly language—
a second generation language—typically requires
more source code instructions to perform a given set
of tasks than third generation languages such as C,
C++, and Java. And, source code written in a third
generation language typically requires more source
code instructions to perform a given set of tasks
than fourth generation languages such as Python or
Ruby.

To illustrate, Figure 1 presents the source code
to display the words “Hello, world” in (1) assembly
(a second generation language) and (2) Python (a
fourth generation language). The valuation ana-
lyst should use software engineering models that
account for language differences in estimating cost.

In an effort to address the deficiencies in the use
of simplistic lines-of-code metrics, function-related
metrics were developed to measure software devel-
opment effort. The most common of these metrics
is function points.

The number of function points in a computer
program is often calculated with an algorithm that
uses a weighted count of the number of inputs,
outputs, user interactions/inquiries, data files, and
external interfaces. The function point count is
modified by the com-
plexity of the develop-
ment project.

Function point
counts are sometimes
used by software engi-
neering models to esti-
mate the number of
lines of code based on
an average number of
lines of code established
per function point for
a given language. The
discipline of func-
tion point analysis has
evolved over time and
has been standardized
to a large extent by the
International Function
Point Users’ Group.

Other inputs to the
software engineering
models include attri-

butes such as: programming language experience
and quality of the project team, software develop-
ment tools used, programming practices, complexity
type of application, time constraints, level of system
documentation, and required program reliability.

Presently, three of the most commonly used
algorithmic software cost estimation models are the
following:

1.	 The Constructive Cost Model (COCOMO)
and its derivatives

2.	 The KnowledgePLAN model

3.	 The Software Lifecycle Management (SLIM)
model

These software cost estimation models are con-
sidered “algorithmic” models because they generate
cost estimates using a set of quantified inputs, such
as lines of source code, which is processed auto-
matically in accordance with metrics and formulas
derived from the empirical analysis of large data-
bases of actual software projects.

Typically, the cost estimation models calculate
an estimate of the effort required to develop a soft-
ware system in terms of person-months. The num-
ber of person-months is multiplied by a blended cost
per person-month to arrive at the indicated value of
the computer software.

The blended cost per person-month is typically a
full absorption cost (e.g., the cost of a software pro-
grammer would include benefits as well as wages).

.text

.global _start
 _start:

 mov $4, %eax /* write system call */
 mov $1, %ebx /* stdout */
 mov $msg, %ecx
 mov $msgend-msg, %edx
 int $0x80

 mov $1, %eax /* _exit system call */
 mov $0, %ebx /* EXIT_SUCCESS */
 int $0x80

 .data
 msg: .ascii "Hello, world\n"
 msgend:

 print "Hello, world"

(a) Assembly (2nd Gen.) ―14 lines of code (b) Python (4th Gen.)―1 line of code

Figure 1
Comparison of the Number of Lines of Source Code to Display “Hello, World”

76 INSIGHTS • SUMMER 2016	 www.willamette.com

COCOMO
The first generation of COCOMO was developed in
the 1980s.12

The software cost estimation methods estimate
the amount of effort in person-months required to
develop software, taking into consideration the size
of the developed programs (particularly in lines of
code), the program characteristics, and the environ-
ment in which they are developed.

The basic software development equation defined
by the COCOMO II model is as follows:

PM = a(KLOC)b × EM

where:

	 PM	 =	 Person-months
	 KLOC	 =	 Thousands of delivered lines of code
	 a	 =	 Coefficient dependent on the class
			 of project (organic, semi-detached,
			 embedded)
	 b	 =	 Scaling exponent
	 EM	 =	 Effort multiplier

A more updated model, COCOMO II, was devel-
oped by researchers at the University of Southern
California (USC).13

The updated model supports the cost estimation of
a variety of third and fourth generation language-based
projects. It also incorporates function point analysis.
An online estimation tool encompassing the COCOMO
II model is available through the USC Center for
Systems and Software engineering website.14

We provide an illustration of a cost approach
valuation analysis using COCOMO II, as described
later in this discussion.

A third model, COCOMO III, is being developed
by USC and its project partners with the aim of
improving the model with new and updated software
cost drivers and new development paradigms.

The COCOMO III project purpose statement
indicates that this model will be more attuned to
the increasingly diverse use of computer software in
the health care environment, including software in
biomedical devices (both as embedded systems and
mobile devices) and “Big Data” health management
analytics.15

KnowledgePLAN
KnowledgePLAN (KPLAN) is a proprietary function
point-driven model that incorporates a historical
knowledge base of project data derived from over
11,000 software projects that have been collected
and researched by Software Productivity Research,
LLC (SPR).16

The particular algorithms utilized by KPLAN
have not been fully disclosed. The model uses a base
of functional metrics to derive predictive/analytical
productivity rates given a large number of known
(or assumed) parameters. Projects are classified by,
among other things, scope (e.g., program or appli-
cation, sub-system), topology, (e.g., standalone,
client/server), class (e.g., end-user developed, IT
developed), and type (e.g., interactive graphical user
interface, multimedia).

The size of the system can be expressed in sev-
eral ways, including function points or lines of code,
by language. The valuation analyst assigns attribute
values that describe the personnel, technology, pro-
cess, environment, and product.

KPLAN was updated in 2011 with the release of
version 4.4, but SPR appears to have ceased sup-
port for the software cost estimation tool. The tool
is still available for download from various software
archive websites.

SLIM
The SLIM software engineering model was developed
by Lawrence Putnam, the founder of Quantitative
Software Management, Inc. (QSM). QSM licens-
es software cost estimation tools incorporating
the model. The SLIM model (also referred to by
commentators and in academic literature as the
“Putnam model”) estimates the amount of effort in
person-months required to develop software based
on the following:

1.	 A manpower build-up parameter (a number
representing a range from entirely new soft-
ware to rebuilt software)

2.	 The software delivery time

3.	 A productivity environment factor

The SLIM model was developed using a knowl-
edge base of project data derived from over 6,000
software projects that have been collected and
researched by QSM.

The main equation for the SLIM model is:

�� � � � ����
���� � ����� �⁄ �

�
� �

where:

	 PY	 =	 Person-years

	 KLOC	 =	 Thousands of delivered lines of code

	 PROD	 =	 Productivity environment factor

	 TIME	 =	 Software delivery time

	 B	 =	 Manpower build-up parameter

www.willamette.com	 INSIGHTS • SUMMER 2016 77

Obsolescence
In computer software valuation under the cost
approach, the valuation analyst ordinarily should
consider all relevant forms of obsolescence. When
the subject computer software is less useful than
its ideal replacement, its cost should be adjusted to
reflect a loss due to the following types of obsoles-
cence:

1.	 Functional,

2.	 Technological

3.	 Economic

A fourth form of obsolescence, physical dete-
rioration, is not generally applicable to computer
software, as software typically does not experience
physical wear and tear.

Functional obsolescence is the loss in value of an
intangible asset because the subject intangible asset
does not have the functionality of—or is less useful
than—a replacement intangible asset. In the case of
computer software, functional obsolescence is often
mitigated when the subject software is continually
maintained.

Technological obsolescence is often considered
to be a particular component of functional obso-
lescence. It is the loss in value of intangible asset
to two technological improvements that make the
replacement intangible asset more efficient or effec-
tive than the subject intangible asset. In the valu-
ation of computer software, technological obsoles-
cence usually exists when:

1.	 the subject computer software is written in
an inefficient or outdated language or

2.	 runs on a platform (hardware, operating
system, and so on) that is becoming obso-
lete (and the software is not portable).

Technological obsolescence may also exist if
the outdated models or practices of the developers
result in a less-than-optimal use of resources.

Economic obsolescence is a reduction in the
value of the subject computer software due to events
that are typically outside of the control of the com-
puter software owner/operator. Such events may
include legal or regulatory changes or restrictions,
or market conditions (for example, new competi-
tors).

Economic obsolescence may be an important
issue in the valuation of software developed for
resale. Economic obsolescence is generally not very
evident with regard to internally developed opera-
tional computer software that is being used by a
financially successful taxpayer company.

Income Approach
In the income approach, the value of computer soft-
ware is estimated as the present value of the future
economic income attributable to the ownership of
the computer software over its expected remaining
useful life (RUL). This economic income may result
from prospective (1) revenue, (2) cost savings, or
(3) royalty or license income associated with the
computer software.

The income approach methods used in the valu-
ation of computer software include the following:

1.	 The yield capitalization (or “yield cap”)
method

2.	 The direct capitalization method

The discounted cash flow (DCF) analysis is a
common yield capitalization valuation method.

The yield cap method, and in particular the DCF
analysis, is typically used in the valuation of com-
puter software when there is an identifiable income
stream associated with the subject software.

Therefore, this method is often used in the
valuation of product software or databases that
generate income through their sale or license. The
future cash flow related to such product software,
for example, may be estimated by projecting rev-
enue, expenses (excluding depreciation and amor-
tization expense), and capital investments over the
software estimated remaining useful life (RUL).
The future cash flow projection is discounted to a
present value using an appropriate present value
discount rate.

Market Approach
In the market approach, the value of computer
software is estimated by reference to actual market
sale or license transactions involving comparable or

78 INSIGHTS • SUMMER 2016	 www.willamette.com

guideline software systems. This valuation approach
may be difficult to use in the valuation of internally
developed software.

The relief from royalty valuation method is
used to estimate the cost savings that accrue to the
taxpayer company owner/operator of the computer
software. This valuation method assumes that the
taxpayer owner/operator would otherwise have to
pay a royalty or license fee on the revenue earned
through use of the subject software.

The royalty rate used in the valuation analysis
is based on an analysis of empirical, market-derived
royalty rates for comparable or guideline computer
software systems.

In the case of product software, a product
revenue is projected over the expected RUL of the
subject computer software. The market-derived
royalty rate is then applied to estimate the royalty
savings. The net after-tax royalty savings are
calculated for each year in the RUL of the subject
computer software. The net after-tax royalty savings
are then discounted to a present value, as with the
yield cap method.

Another market approach method used to value
computer software is the market transaction meth-
od.18 Under the market transaction method, where
arm’s-length market transaction data are available
for comparable or guideline computer software, the
implied value is typically expressed as a dollars-per-
line-of-code or dollars-per-function-point figure.

This value per unit is then applied to the sub-
ject taxpayer company software lines of code (or
function points) to estimate the value of the sub-
ject software. As with any valuation method that
relies on comparable or guideline intangible assets,
adjustments should be made for material differences
between (1) comparable or guideline computer soft-
ware and (2) the subject computer software.

A simple example of the market transaction
method is presented in Exhibit 6.

Remaining Useful Life
Remaining useful life reflects the period during
which the subject computer software is expected to
contribute directly or indirectly to the owner’s or
licensee’s future cash flow. It reflects the economic
useful life and may differ from other measures of
useful life, such as the amortization period for finan-
cial reporting purposes under generally accepted
accounting principles (GAAP).

According to the Financial Accounting Standards
Board (FASB) Accounting Standards Codification
(ASC) topic 350-40-35-5, “Given the history of

rapid changes in technology, software often has had
a relatively short useful life.”

In some instances, software that has been fully
amortized under GAAP—based on expectations
of a short useful life—may still be in use. It is not
uncommon in taxpayer companies for software sys-
tems that were initially developed 20 to 30 years ago
to remain in current use.

The estimation of the RUL may be an important
consideration in each of the three generally accept-
ed approaches to computer software valuation.

In the income approach, an RUL analysis may be
performed in order to estimate the projection period
for the prospective computer software economic
income. In the cost approach, an RUL analysis may
be performed in order to estimate the total amount
of obsolescence, if any, from the estimated measure
of cost.

In the market approach, an RUL analysis may be
performed in order to:

1.	 select or reject comparable or guideline
software license or sale transactions and/or

2.	 make adjustments to the comparable or
guideline software sale and/or license trans-
actional data.

Valuation Example
Exhibits 1 through 6 of this discussion present an
example of a computer software valuation analysis.
The results of the three methods are synthesized
and presented in Exhibit 1.

Our example focuses on the fictional AlphaMed
Company (AlphaMed), which performs medical
diagnostic services and toxicology drug testing. Let
us suppose the fair market value of the AlphaMed
medical diagnostic and testing equipment (the “sub-
ject equipment”), as of the valuation date (January
1, 2016), has been estimated as $16.0 million. This
value is inclusive of any software associated with the
subject equipment.

Under the applicable local and state tax laws and
guidelines, the software component of the subject
equipment (the “subject computer software”) quali-
fies as a tax-exempt intangible asset. AlphaMed has
hired the valuation analyst to estimate the fair mar-
ket value of the subject computer software.

Cost Approach—Replacement Cost
New less Depreciation Method

For simplicity, let’s assume the following;

www.willamette.com	 INSIGHTS • SUMMER 2016 79

1.	 The replacement cost new is
estimated using the average
results of two software engi-
neering cost estimation models:
COCOCO II and SLIM.

2.	 The line-of-code counts and
other model inputs are as pre-
sented in Exhibits 2 through 4.

3.	 The average of the COCOMO
II and SLIM efforts is multi-
plied by the obsolescence factor,
where applicable, to arrive at
the adjusted effort in person-
months.

4.	 The analyst determined that the
blended development cost per
person-month was $8,600.

5.	 The analyst applied the blended
development cost to the total
adjusted effort in person-months to arrive
at the total development costs.

6.	 The analyst applied a 10 percent develop-
er’s profit and a 15 percent entrepreneurial
incentive to reflect the profit motive and
opportunity cost associated with developing
the AlphaMed software.

This method results in an indicated value esti-
mate of the subject computer software of $8.3 mil-
lion as presented in Exhibit 4.

Market Approach—Relief from
Royalty Method

Let’s assume the following additional facts related to
the AlphaMed software:

1.	 Next year projected revenue attributed to
the sale of medical diagnostic and testing
services using the software is $45 million.

2.	 The annual revenue growth rate is 5 percent.

3.	 The market-derived royalty rate is 8 percent.

4.	 The effective company income tax rate is
40 percent.

5.	 The expected RUL of the software (until
replacement or retirement) is five years.

This method results in an indicated value esti-
mate of the subject computer software of $8.5 mil-
lion, as presented in Exhibit 5.

Market Approach—Market
Transaction Method

Let’s assume the following additional facts related to
the AlphaMed software:

1.	 The analyst estimates the total number of
LOC as 570,000.

2.	 The comparable arm’s-length software sale/
licensing transactions were identified, yield-
ing a sale transaction price per LOC.

3.	 The indicated price range is between $12.60
per LOC and $18.50 per LOC.

4.	 The range of indicated values for the sub-
ject software code is calculated as the
market-derived price per LOC times the
total number of LOC.

This method results in an indicated value esti-
mate of the subject computer software of $8.9 mil-
lion, as presented in Exhibit 6.

Valuation Synthesis and Conclusion
As presented in Exhibit 1, the three methods were
provided an equal weighting.

The fair market value of the subject computer
software, based on the valuation analysis described
herein, as of the valuation date (January 1, 2016),
is $8,540,000.

Effect on the Property Tax
Assessment

The fair market value of the subject equipment
was estimated as $16.0 million. However, this fair

80 INSIGHTS • SUMMER 2016	 www.willamette.com

market value estimate incorporated the value of the
subject computer software.

As presented in Exhibit 1, the estimated fair
market value of the subject computer software was
$8.5 million as of the valuation date. Subtracting
the value of the subject computer software yields a
fair market value of $7.5 million ($16.0 million less
$8.5 million) for the taxable portion of the subject
equipment.

Therefore, the computer software valuation
analysis resulted in properly reducing the AlphaMed
property taxes on the subject equipment by more
than 50 percent.

Notes:
1.	 See Cardinal Health 301, Inc., v. County of

Orange, 167 Cal.App.4th 219 (2008).

2.	 Rulings of the Tax Commissioner, Document
13-47, Virginia Department of Taxation, avail-
able at http://www.tax.virginia.gov/laws-rules-
decisions/rulings-tax-commissioner/13-47.

3.	 See Dallas Cent. Appraisal Dist. v. Tech Data, 930
S.W.2d 119 (Tex.App.-Dallas 1996, pet. denied).

4.	 See Andrew Jergens Company v. Wilkins, Tax
Commr., 848 N.E.2d 499 (Ohio 2006).

5.	 “2016 Personal Property Valuation Guide,”
Kansas Department of Revenue, available at
http://www.ksrevenue.org/pdf/PPVG.pdf.

6.	 See Wisconsin Statute §70.11(39).

7.	 See City of La Crosse v. Wisconsin Department
of Revenue and Gundersen Clinic, Ltd., [2 Wis.]
St. Tax Rep. (CCH) paragraphs 401-589 (Wis.
Tax App. Commission June 8, 2012, incorporat-
ing June 9, 2008 ruling), aff’d id. paragraphs 401-
658 (Wis. Cir. Ct. Dane County Dec. 7, 2012).

8.	 As discussed in Cardinal Health v. County of
Orange, 167 Cal.App.4th 219, 222 (2008).

9.	 Kentucky Department of Revenue, Audit Manual,
2007.

10.	 Capers Jones, Estimating Software Costs:
Bringing Realism to Estimating, 2d ed., (New
York: McGraw-Hill, 2007), 8.

11.	 Ibid., 9.

12.	 For a detailed description of COCOMO, see Barry
W. Boehm, Software Engineering Economics
(New York: Prentice-Hall, 1981).

13.	 For a detailed description of COCOMO II, see
Boehm et al., Software Cost Estimation with
COCOMO II (New York: Prentice-Hall PTR,
2000).

14.	 See http://csse.usc.edu/research/COCOMOII/.

15.	 See http://www.cocomo3.com/about/.

16.	 KPLAN is described in a number of publications
by Capers Jones. See note 6.

17.	 More detailed information about the SLIM model
is available from the QSM website, http://www.
qsm.com.

18.	 The market transaction method is often
described in valuation literature as the compa-
rable sales method, the comparable transaction
method, or the like. See, e.g., James A. Amdur,
“Telecommunications Property Taxation,”
Federal Communications
Law Journal 46, no.2
(1994): 231.

19.	 Ibid.: 232.

John Elmore is a vice president in our
Atlanta practice office. John can be
reached at (404) 475-2303 or at jeel-
more@willamette.com.

Indicated Relative Concluded
Valuation Approach and Method Value Emphasis Value Reference

Cost Approach—Replacement Cost New less Depreciation Method 8,290,000$ 1/3 2,763,333$ Exhibit 4

Market Approach—Relief from Royalty Method 8,470,000 1/3 2,823,333 Exhibit 5

Market Approach—Market Transaction Method 8,860,000 1/3 2,953,333 Exhibit 6

Fair Market Value of Subject Computer Software (rounded) 8,540,000$

Exhibit 1
AlphaMed Company
Valuation Synthesis and Conclusion
As of January 1, 2016

www.willamette.com	 INSIGHTS • SUMMER 2016 81

Scale
Rating Factor

Scale Factors:
PREC Precedentedness High 2.48
FLEX Development Flexibility High 2.03
RESL Architecture/Risk Resolution Nominal 4.24
TEAM Team Cohesion High 2.19
PMAT Process Maturity Nominal 4.68

Sum of the Scale Factors 15.62

Scaling Exponent (b) = 0.91 + 0.01 x 15.62 = 1.07

Exhibit 2
AlphaMed Company
Cost Approach
COCOMO II Variables—Scaling Exponent
As of January 1, 2016

Rating Multiplier
Product Factors:

RELY Required System Reliability Very High 1.28
DATA Data Base Size Nominal 1.00
CPLX Software System Complexity:

Complexity-Control Operations Nominal 1.00
Complexity-Computational Operations High 1.20
Complexity-Device-Dependent Operations Nominal 1.00
Complexity-Sensor Operations High 1.17
Complexity-Data Management Operations Nominal 1.00
Complexity-User Interface Nominal 1.00

Average 1.06
RUSE Required Reusability Low 0.75
DOCU Documentation Match to Life Cycle Needs Nominal 1.00

Computer Factors:
TIME Execution Time Constraint High 1.09
STOR Storage Restraint Very High 1.32
PVOL Platform Volatility Low 0.87

Personnel Factors:
ACAP Analyst Capability High 0.80
PCAP Personal Continuity High 0.87
PCON Applications Experience High 0.91
APEX Applications Experience Very High 0.95
PLEX Platform Experience Nominal 1.00
LTEX Language and Tool Experience Nominal 1.00

Project Factors:
TOOL Use of Software Tools Nominal 1.00
SITE Multistate Development Site Collocation Nominal 1.00
SCED Required Development Schedule Nominal 1.00

Product of the Effort Multipliers 0.77

Combined Effort Multiplier = 0.77

Exhibit 3
AlphaMed Company
Cost Approach
COCOMO II Variables—Effort Multiplier
As of January 1, 2016

82 INSIGHTS • SUMMER 2016	 www.willamette.com

M
et

ho
d

C
O

C
O

M
O

 II
SL

IM
A

ve
ra

ge
A

dj
us

te
d

To
ta

l
Ph

ys
ic

al
Lo

gi
ca

l
Ef

fo
rt

in
Ef

fo
rt

in
Ef

fo
rt

in
Ef

fo
rt

in
So

ftw
ar

e
Ph

ys
ic

al
Ex

ec
ut

ab
le

Ex
ec

ut
ab

le
Pe

rs
on

-
Pe

rs
on

-
Pe

rs
on

-
O

bs
ol

es
ce

nc
e

Pe
rs

on
-

Pr
og

ra
m

LO
C

LO
C

 [a
]

LO
C

 [b
]

M
on

th
s [

c]
M

on
th

s [
d]

M
on

th
s

A
dj

us
tm

en
t [

e]
M

on
th

s [
f]

Pr
og

ra
m

 1
15

5,
00

0

13

1,
75

0

98

,8
13

30
2.

25

23

2.
73

26
7.

49

0%

26
7.

49
Pr

og
ra

m
 2

75
,0

00

63

,7
50

47
,8

13

13

9.
39

16
0.

30

14

9.
84

10
0%

-
Pr

og
ra

m
 3

16
0,

00
0

13
6,

00
0

10
2,

00
0

31

2.
66

34
3.

92

32

8.
29

10
%

29
5.

46
Pr

og
ra

m
 4

18
0,

00
0

15

3,
00

0
11

4,
75

0
35

4.
49

17
7.

25
26

5.
87

25

%
19

9.
40

To
ta

l
57

0,
00

0

48
4,

50
0

36
3,

37
5

1,
10

8.
79

91
4.

20
1,

01
1.

50

76
2.

36

Ti
m

es
: B

le
nd

ed
 D

ev
el

op
m

en
t C

os
t p

er
 P

er
so

n-
M

on
th

 [g
]

8,
60

0
$

Eq
ua

ls
: D

ev
el

op
m

en
t C

os
t (

ne
t o

f o
bs

ol
es

ce
nc

e)
6,

55
6,

28
0

A
dd

: D
ev

el
op

er
's

Pr
of

it
(1

0
pe

rc
en

t)
[h

]
65

5,
62

8
Eq

ua
ls

: T
ot

al
 D

ev
el

op
m

en
t C

os
t w

ith
 D

ev
el

op
er

's
Pr

of
it

7,
21

1,
90

8
A

dd
: E

nt
re

pr
en

eu
ria

l I
nc

en
tiv

e
(1

5
pe

rc
en

t)
[h

]
1,

08
1,

78
6

In
di

ca
te

d
V

al
ue

 o
f S

ub
je

ct
 C

om
pu

te
r

So
ft

w
ar

e
(r

ou
nd

ed
)

8,
29

0,
00

0
$

LO
C

 =
 L

in
es

 o
f c

od
e

[a
] T

he
 a

na
ly

st
 u

se
d

a
so

ur
ce

 to
 e

xe
cu

ta
bl

e
lin

e-
of

-c
od

e
re

du
ct

io
n

pe
rc

en
ta

ge
 o

f 1
5

pe
rc

en
t.

[b
] T

he
 a

na
ly

st
 u

se
d

a
ph

ys
ic

al
 to

 lo
gi

ca
l l

in
e-

of
-c

od
e

re
du

ct
io

n
pe

rc
en

ta
ge

 o
f 2

5
pe

rc
en

t.
[c

] B
as

ed
 o

n
co

ef
fic

ie
nt

 a
 =

 2
.9

4,
 s

ca
lin

g
ex

po
ne

nt
 b

as
 p

re
se

nt
ed

 o
n

Ex
hi

bi
t 2

, a
nd

 e
ff

or
t m

ul
tip

lie
r a

s p
re

se
nt

ed
 in

 E
xh

ib
it

3.
[d

] D
er

iv
ed

 b
y

th
e

an
al

ys
t u

si
ng

 a
 S

LI
M

 v
al

ua
tio

n
to

ol
 (d

et
ai

ls
 n

ot
 p

re
se

nt
ed

).

R
U

L
an

d
ag

e
of

 e
ac

h
of

 th
e

pr
og

ra
m

s.
[f

] C
al

cu
la

te
d

as
 th

e
av

er
ag

e
ef

fo
rt

in
 p

er
so

n-
m

on
th

s m
ul

tip
lie

d
by

 th
e

ob
so

le
sc

en
ce

 a
dj

us
tm

en
t.

[g
] C

al
cu

la
te

d
as

 a
 b

le
nd

ed
 ra

te
 b

as
ed

 o
n

th
e

fu
ll

ab
so

rp
tio

n
co

st
 o

f e
m

pl
oy

ee
s a

nd
 c

on
tra

ct
or

s i
nv

ol
ve

d
in

 d
ev

el
op

m
en

t.
[h

] A
na

ly
st

 e
st

im
at

e.

[e
] A

n
ob

so
le

sc
en

ce
 a

dj
us

tm
en

t w
as

 a
pp

lie
d

by
 th

e
an

al
ys

t f
or

 p
ro

gr
am

s t
ha

t h
av

e
be

en
 sc

he
du

le
d

fo
r r

ep
la

ce
m

en
t/u

pd
at

e
or

 re
tir

em
en

t b
as

ed
 o

n
th

e

Ex
h

ib
it

 4
A

lp
h

aM
ed

 C
o

m
p

an
y

C
o

st
 A

p
p

ro
ac

h
R

ep
la

ce
m

en
t

C
o

st
 N

ew
 l

es
s

D
ep

re
ci

at
io

n
 M

et
h

o
d

C
o

m
p

u
te

r
So

ft
w

ar
e

V
al

u
at

io
n

 S
u

m
m

ar
y

A
s

o
f

Ja
n

u
ar

y
1,

 2
01

6

www.willamette.com	 INSIGHTS • SUMMER 2016 83

Year 1 Year 2 Year 3 Year 4 Year 5

Software-Dependent Sales of Diagnostic Services 45,000,000$ 47,250,000$ 49,612,500$ 52,093,125$ 54,697,781$
Multiplied by: Royalty Rate 8.0% 8.0% 8.0% 8.0% 8.0%
Equals: Gross Royalty Savings 3,600,000 3,780,000 3,969,000 4,167,450 4,375,823
Less: Income Tax (at 40%) (1,440,000) (1,512,000) (1,587,600) (1,666,980) (1,750,329)
Equals: Net Royalty Savings 2,160,000 2,268,000 2,381,400 2,500,470 2,625,494

Periods Discounted 0.5 1.5 2.5 3.5 4.5
Multiplied by: Present Value Interest Factor (at 15%) 0.933 0.811 0.705 0.613 0.533
Equals: Present Value of Net Royalty Savings 2,015,280$ 1,839,348$ 1,678,887$ 1,532,788$ 1,399,388$

Indicated Value of Subject Computer Software (rounded) 8,470,000$

Exhibit 5
AlphaMed Company
Market Approach
Relief from Royalty Method
Computer Software Valuation Summary
As of January 1, 2016

Sale
Sale Transaction

Number Transaction Price
Valuation Variables of LOC Price per LOC

Comparable Software Sale/Licensing Transaction 1 408,700 7,560,950$ 18.50$
Comparable Software Sale/Licensing Transaction 2 587,020 8,394,386 14.30
Comparable Software Sale/Licensing Transaction 3 362,892 4,572,439 12.60

Low End of High End of
Indicated Indicated

Valuation Analysis Value Range Value Range

Subject Computer Software Total Number of LOC 570,000 570,000
Multiplied by: Market-Derived Price per LOC 12.60$ 18.50$
Equals: Indicated Value of Subject Computer Software 7,182,000$ 10,545,000$

Indicated Value of Subject Computer Software (rounded) [a] 8,860,000$

LOC = Line(s) of code
Note:
[a] Based on the average of the low and high end ranges.

Exhibit 6
AlphaMed Company
Market Approach
Market Transaction Method
Computer Software Valuation Summary
As of January 1, 2016

